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A modified analysis for stress transfer in 
fibre-reinforced composites with bonded fibre 
ends 

C H U N - H W A Y  HSUEH 
Metals and Ceramics Division, Oak Ridge National Laboratory Oak Ridge, Tennessee 37831, USA 

The elastic stress transfer from the matrix to the embedded fibre in fibre-reinforced composites has 
been analysed previously when the loading direction is parallel to the fibre axis and the fibre is 
bonded to the matrix. Stress transfer occurs both at the interface along the fibre length and at the 
ends of the fibre. However, the boundary condition at the bonded ends is ambiguous, and various 
assumptions have been made to obtain solutions for this stress transfer problem. To satisfy more 
rigorously the boundary condition for the bonded ends, a new technique of assuming imaginary 
fibres in the composite is proposed in the present study. Compared to the previous analytical 
solution, the present analytical solution bears more physical meaning and is in better agreement 
with numerical and experimental results 

1. I n t r o d u c t i o n  
Substantial reinforcement can be achieved by incor- 
porating aligned fibres in a matrix with the fibre axis 
parallel to the loading direction [1, 2]. The mechanics 
of reinforcement relies on stress transfer from the 
matrix to the embedded fibres during loading. To 
analyse this stress transfer, the shear lag model [3-14] 
has been used extensively in which a representative 
volume element containing one fibre (see Fig. 1 below) 
is adopted for analysis. 

In the classica] shear lag model [3], the ends of the 
embedded fibre are assumed to debond from the 
matrix and stress transfer occurs only at the interface 
along the fibre length. At these debonded ends, the 
stress is free and the boundary condition in solving 
the stress transfer problem is trivial. When the ends of 
the fibre are bonded to the matrix, stress transfer also 
occurs at the bonded ends, and the stress at the 
bonded ends is finite. However, this finite stress is not 
a predetermined value, and the boundary condition at 
the bonded ends becomes ambiguous. Different as- 
sumptions have been made to analyse the stress trans- 
fer problem with bonded fibre ends. In the solutions 
obtained by polynomial approximation [15], a con- 
stant axial stress or displacement is assumed in the 
matrix at the cross-section corresponding to the fibre 
ends. In the solutions obtained by the finite element 
method [16], a uniform axial displacement is adopted 
at the end of the matrix. In the finite difference analysis 
[17], the lattice in the composite is strained by a con- 
stant amount; then, a technique of over-relaxation or 
block relaxation is used to calculate the displacement 
in the equilibrium condition. In the previous analyti- 
cal solution [12] it was assumed that at the least 
perturbed positions (due to the presence of the fibre) 
the axial stress is equal to the applied stress. 
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As a complement to the previous study [12], the 
purpose of the present study is to adopt a more rigor- 
ous boundary condition for the bonded ends to obtain 
analytical solutions for the stress transfer problem. 
First, the previous analytical solution [12] is sum- 
marized. Second, a new technique of adding imaginary 
fibres in the shear lag model is developed to define 
a more rigorous boundary condition for the bonded 
ends and to obtain a more meaningful analytical 
solution. Third, the present analytical solution is com- 
pared with the previous analytical solution [12] and 
the existing numerical solution [17]. Finally, effects of 
the distance between the bonded ends and the loading 
surface, the aspect ratio of the fibre, and the Young's 
modulus ratio of fibre to matrix on stress tran,fer are 
shown. A critical fibre length for effective stress trans- 
fer [18] is also defined and compared with the experi- 
mental measurements [19]. 

2. Summary of the previous analytical 
solution 

The shear lag model is shown in Fig. 1. A fibre with 
radius a and length 21 is embedded at the centre of 
a coaxial cylindrical matrix with a radius b and length 
21'. The cylindrical coordinates r, 0 and z are used. 
A tensile stress Go is applied to the composite in the 
z direction. The fibre is bonded to the matrix at both 
the interface (i.e. at r = a) and the ends (z = +/).  The 
stress is transferred from the matrix to the fibre 
through both the interface and the fibre ends. 

The general solutions for the axial stress distribu- 
tion in the fibre, cyf, and the interfacial shear stress, ~a, 
along the fibre length for the problem depicted in 
Fig. 1 have been derived, such that [12] 
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b 2 Ef go 
cyf - a2 Ef + (b 2 - a2)Em + A exp(0~z) + Bexp( - 0~z) 

(1) 

(2) am 
% = - -  [A e x p ( ~ z ) -  B e x p ( -  ~z)] 

2 

where 

1 ( a2Ef "-k (b 2 -- a2) Em _~1/2 

a = a \(1 + vm)E~fin-(b-/~ - ( ~ - -  a2)/2]] (3) 

E and v are Young's modulus and Poisson's ratio, and 
the subscripts f and m denote the fibre and the matrix, 
respectively. Determination of the coefficients A and 
B is contingent upon the boundary condition at the 
ends of the fibre. 

The stress at the bonded ends is finite. However, this 
finite stress is not a predetermined value which, in 
turn, results in difficulties in determining A and B. In 
the previous analysis [12], instead of defining an exact 
boundary condition for the bonded ends, an alterna- 
tive boundary condition in an approximate manner is 
adopted. It is noted that within the region - 1 _< z < l 
and r < b, the least perturbed positions (due to the 
presence of the fibre) are located at z = _+ I and r = b. 
Hence,  axial stresses at these positions are assumed to 
be unperturbed and equal to the applied stress, such 
that 

~  at z =  _+l, r = b  (4) 

The solution for A and B based on the above assump- 
tion (Equation 4) are [12] 

a2(Em-Ef)fY~ -)(b2-a2 ) { I (  A = + b 

B = A (5b) 

matrix in the region l < z _< l'. At z = l the stress is 
continuous between the imaginary fibre and the real 
fibre. The stress thus transfers between the real fibre 
and the matrix in the region 0 < z < I. 

Whereas the general solutions for crf and % in the 
real fibre are described by Equations 1 and 2, the 
general solutions for the stress distribution ~f' and the 
interfacial shear stress ~.' in the imaginary fibre can be 
obtained by replacing Ef with E m in Equations 1 to 3, 
such that 

(yft = gO -[- A' exp(a' z) + B' exp( - a' z) 

z j  - [A' exp(a'z) - B ' e x p (  - ~ ' z ) ]  

l~z<_l' 
(6) 

l<z<l '  

(7) 

where 

o ( = b { ( l +  Vm)Ib21n(! ) b 2 -  ]~ -  
1/2 

To obtain the coefficients A and B for the real fibre 
and A' and B' for the imaginary fibre, four boundary 
conditions are required which are 

O'f' = go at z = I' (9a) 

g f  = O'f' at z = I (9b) 

"~a = Ta t at z = l (9c) 

~ , = 0  at z = 0  (9d) 

b2-~_-a2"]Em _a2][exp(od) + exp(_al)]} -~ 
2 In(b/a)] Ef (5a) 

3. The present analytical solution 
The boundary condition at the bonded ends is defined 
by the continuity condition at z = ___ I. To satisfy this 
continuity condition, a news technique of adding 
imaginary fibres to the shear lag model is developed. 
The matrix above and below the fibre (see the area 

Equation 9a is the loading condition, Equations 9b 
and c are the continuity conditions, and Equation 9d 
is the symmetry condition. 

The solutions for A, B, A' and B' subjected to the 
above boundary conditions are 

A = 
(b 2 -- a2)(Em -- Ef)g 0 f 
a 2 E f + ( ~ - - a Z - ~  ~ exp(a/) + e x p ( - a l ) -  

[exp(~/) -- exp( -- ~1)] [exp(C/) -- exp {C(2I' - l)}]'~- 1 
) 

(10a) 

between dashed lines in Fig. 1) is treated as two imagi- 
nary fibres which have the matrix properties. The 
geometry in Fig. 1 is symmetric, and only the region 
z >_ 0 is considered. The physical meaning of the ana- 
lytical procedures need in solving this problem is 
stated as follows. A uniform stress go is loaded on the 
imaginary fibre and the matrix at z = l'. The stress is 
transferred between the imaginary fibre and the 

B = A (10b)  

A' = ~[exp(a/) - exp( - ~/)] A (10c) 
~' {exp(~'l) + exp[~'(21' - / ) ] }  

B' = - A' exp (2~' l') (10d) 

Furthermore, when the bonded end is sufficiently re- 
mote from the loading surface such that 
exp (2~' 1')>> exp (~' l), the coefficient A ( = B) be- 
comes 

A = 
(b2 - a2) (Em - Ef)~o ( ~' ) 

a 2 E f + ( ~ - - a ~  ~'[exp (~l) +ex p (  - a / ) ]  +~[exp(~/ )  - e x p (  - ~ l ) ]  
(11) 
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Also, under this condition the axial stress and the 
interfacial shear stress at the bonded ends have 
asymptotic values, such that 

(b 2 - a2) (Ern - Ef)cx'[exp(cz/) + exp( - = l ) ]  "~ 
_ ~o b 2 Ef + 0([-ex-P-p ( ~ i +  (~r a2Ef + (b 2 - a 2) Em 

/ 

= -a{z(!b2~aZ)(Em__~_Ef)~_o~( 0([exp (0~,) - exp( - 0~,)] ) 

2 \ a=Ee+(b=-a2)em / o ( [ e x p ( o ~ l ) + ~ - ~ O ] + o ~ [ e x p ( o H ) - e x p ( - ~ / ) ]  

at z = I (12) 

at z = I (13) 

4. Results 
The present analytical solution is compared with some 
of the existing solutions. The stress transfer problem 
described in Fig. 1 has been analysed numerically by 
using a finite difference method [17]. However, to 
simplify the analysis, cubic lattices were adopted for 
both the fibre and the matrix in the finite difference 
analysis. Hence, instead of the cylindrical geometry 
depicted by Fig. 1, the geometry considered in the 
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Figure 1 Schematic diagram showing the shear lag model for stress 
transfer from the matrix to the embedded fibre. Imaginary fibres 
(shown dashed) are added to analyse the case where the ends of the 
real fibre are bonded to the matrix. 

finite difference analysis is a rectangular parallel- 
epiped [17]. This difference in geometry would result 
in differences in the magnitude of the calculated re- 
suits; however, the trends obtained for both geometry 
should remain the same. The results were calculated 
using b/a = l 1, I/a = 50, l'/a = 100, vf = Vm = 0.35, 
and different values of Ef/E m in the finite difference 
analysis [17]. Unless noted otherwise, the same mater- 
ial properties are adopted in the present calculation. 
First, a comparison is made between the present solu- 
tion, the previous analytical solutions [12] and the 
finite difference Solution [17]. Second, the effects of the 
distance between the fibre end and the loading surface 
(i.e. l ' - l )  are examined. Third, the effects of fibre 
length on stress transfer are shown, and a critical fibre 
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Figure 2 Comparison of distributions with normalized axial posi- 
tion, z/a, of (a) the normalized interfacial shear stress, %/o0 (and 
x'Jcr0), and (b) the normalized axial stress, drf/oo (and cr 'f/%), for 
( ) the present and (--) the previous analytical solution and 
(---) the finite difference solution. 
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length for effective stress transfer is defined to corn- 5 
pare with the experimental measurements [19]. Fi- 
nally, the effects of the Young's modulus ratio Ef/E m 
on stress transfer are studied. The axial stress and the 4 
interfacial shear stress are even and odd functions Of z, 
respectively. Plots of the stress distribution along the 
z direction are shown only for z > 0 in this paper. -- e~ 3 

- -  b -  

4.1. Comparison 2 
The normalized interracial shear stress and the nor- 
malized axial stress in the fibre as functions of the 
normalized axial position are shown, respectively, in 
Fig. 2a and b for E f / E  m = 5. The boundary between 35 
the imaginary and the real fibres is also shown. The (a) 
results obtained from the previous analytical solutions 
are limited to the region of 0 _< z ___ l (i.e. the real fibre) o. 5 
[12], and results for the axial stress distribution are 
not available in the finite difference solution [17]. o.4 
Fig. 2a shows that the maximum interfacial shear 
stress occurs at the end of the fibre (i.e. at z = l). 0.3 
Compared with the previous analytical results [12], b~ 
the present analytical results are in better agreement ~ 

0.2 
with the numerical results (Fig. 2a). By assuming the 
least perturbed positions in the previous analytical 
solution [12], the maximum interfacial shear stress at o.1 
the fibre ends is underestimated (Fig. 2a) and the finite 
axial stress at the bonded fibre ends is overestimated 0.o 
(Fig. 2b). 35 

(b) 

4.2. Effects  o f / ' -  / o n  s t ress  t ransfe r  
The distributions of the axial stress and the interfacial 
shear stress along the loading direction are shown in 
Fig. 3a and b, respectively, for Ef/E m = 5 and different 
values of l'/a. The following results can be concluded 
from Fig. 3a. First, the loading stress on the imaginary 
fibre is cyo, i.e. crf' = or0 at z = l'. The stress transfers 
from the matrix to the imaginary fibre because of the 
existence of the real fibre underneath. Second, at the 
boundary between the imaginary and the real fibres 
(i.e. at the end of the fibre, z = l), the  axial stress has 
a finite value (Fig. 3a). This finite value increases with 
an increase in l', and reaches an asymptote dictated by 
Equation 12 when the loading surface is sufficiently 
remote from the end of the fibre. Third, the stress is 
continuously transferred from the matrix to the real 
fibre. The maximum axial stress in the real fibre 
reaches an equilibrium value when the fibre is suffi- 
ciently long; this will be discussed in section 4.3 below. 

The maximum interracial shear stress occurs at the 
end of the real fibre where discontinuities of material 
properties exist (Fig. 3b). In the absence of the real 
fibre, there is no stress transfer between the matrix and 
the imaginary fibre and the interfacial shear stress 
along the imaginary fibre is zero. When the end of the 
real fibre is closer to the loading surface (i.e. when l' 
decreases), the sense of material discontinuity by load- 
ing is stronger which in turn, results in an increase in 
interracial shear stress. 

It is noted that when the loading surface is suffi- 
ciently remote from the end of the real fibre, both ~f 
and ~a approach their asymptotic values (see Equa- 
tions 12 and 13) at z = 1. This condition is satisfied 
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Figure 3 (a) Normalized axial stress, of/c% (and ~f'/cyo) , and 
(b) normalized interfacial shear stress, ~./c% (and ~.'/c%), as func- 
tions of normalized axial position, z/a, at different values of l'/a. 

when the loading surface is only about three times the 
fibre radius from the fibre end, i.e. when (l' -1 ) /a  > 3 
(see Fig. 3a and b). Hence, the loading surface is as- 
sumed to be sufficiently remote from the fibre end, and 
the effect of l' on stress transfer is ignored in the next 
section, which examines the effects of the aspect ratio 
of the fibre on stress transfer. 

4.3. Effects of the aspect ratio 
The effect of the aspect ratio of the fibre, l/a, on stress 
transfer is shown in Fig. 4. When the fibre is sUffi- 
ciently long (e.g. l/a >_ 30), the maximum axial stress in 
the fibre reaches an equilibrium value such that 

b 2 E f  t~ 0 
t~f = a2 Ef  + (b E - a 2) E m f o r  l ~ oe (14) 

At this equilibrium state there is no stress transfer 
between the fibre and the matrix, the interracial shear 
stress is zero, and both the fibre and the matrix have 
the same equilibrium axial strain Co, such that 

b 2 t~ o 

~0 = a2 Ef  d- (b 2 - a E ) E m  (15) 

A critical fibre length lc has been defined [17, 18] such 
that at this critical length, the maximum fibre stress 
(i.e. the fibre stress at z = 0) equals 9 7 % o f  that for an 
infinitely long fibre (i.e. Equation 14), The normalized 
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Figure 5 Normalized critical fibre length, lc/a, for effective stress 
transfer as a function of the Young's modulus ratio, El~E,.: ( - - )  
present and ( - - )  previous analytical solution, (---) finite difference 
solution, ( 0 )  experimental. 

critical fibre length as a function of the Young's 
modulus ratio, Er/Em, is shown in Fig. 5. The results 
obtained from the previous analytical solution [12], 
the finite difference solution [-17] and the experimental 
measurements of polydiacetylene fibre-epoxy resin 
matrix (for which Er/Em = 16) [19] are also shown. 
Compared with the previous analytical solution, the 
present analytical solution agrees better with both the 
numerical and the experimental results. It is noted 
that the predicted curve should intercept the x axis at 
a value greater than unity (i.e. Er/Em > 1 when 
lc/a = 0) in Fig. 5. This is because the axial stress in 
a discontinuous fibre is always equal to that of an 
infinitely long fibre (and the applied stress) when 
Ef = E m  (i.e. a f  = (5" o w h e n  Ef  = Em).  I t  is  n o t  c l e a r  
why the Ic/a against El~Era curve passes through the 
original in the finite difference results. 

4.4. Effects of the Young's modulus ratio 
The normalized axial stress, the normalized interfacial 
shear stress, and the normalized axial strain as func- 
tions of the normalized axial position are shown in 
Fig. 6a, b and c, respectively, at different Ef/Em ratios. 
Stress transfer from the matrix to the fibre increases 
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Figure 6 (a) Normalized axial stress, Cyr/~ o (and a / / a o ) ,  (b) the 
normalized interracial shear stress, r . /ao  (and %'/~o), and (c) the 
normalized axial strain, ef/eo (and ~f'/e0), as a function of nor- 
malized position, z/a, at different Ef/E m ratios. 

with an increase in the ratio Ef/Em (Fig. 6a). With the 
interfacial shear stress proportional to the stress gradi- 
ent in the fibre, the interfacial shear stress increases 
with an increase in Ef/Em (Fig. 6b). The axial strain is 
normalized by the equilibrium axial strain in the com- 
posite, to, in Fig. 6c. The trends predicted in Fig. 6b 
and c agree with those predicted from the finite differ- 
ence results (see Figs 3 and 4 in Termonia [17]). 

5. Conclusions 
The elastic stress transfer from the matrix to the em- 
bedded fibre in fibre-reinforced composites has been 
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analysed by using the shear lag model. Solutions for 
stress transfer are subjected to the boundary condition 
at the fibre ends. When the fibre ends are debonded 
from the matrix, they are stress-free and the boundary 
condition in solving the stress transfer problem is 
trivial. When the fibre ends are bonded to the matrix, 
stress transfer also occurs at the ends, such that the 
stress at the bonded ends is finite. However, there is 
ambiguity in defining this finite stress. An approxima- 
tion has been made previously to obtain analytical 
solutions for the bonded-ends case. 

The previous analytical solution for the bonded- 
ends case [12] is modified in the present study. This is 
achieved by adding imaginary fibres to the model and 
satisfying the continuity condition at the boundary 
between the imaginary and the real fibres. Compared 
to the previous analytical solution [12], the present 
analytical solution bears more physical meaning and 
agrees better with the numerical [17] and the experi- 
mental results [19]. The effects on stress transfer of the 
distance between the fibre end and the loading surface, 
the aspect ratio of the fibre, and the Young's modulus 
ratio of fibre to matrix are also studied. 
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